Bengal Physician Journal

Register      Login

VOLUME 10 , ISSUE 2 ( May-August, 2023 ) > List of Articles

Original Article

Component-resolved Diagnostics in Allergy Practice Focusing on Food Allergy: A Systematic Review

Shambo S Samajdar, Shatavisa Mukherjee, Sourya Ghosh, Santanu Munshi, Santanu K Tripathi, Saibal Moitra, Pudupakkam Vedanthan

Keywords : Component-resolved diagnostics, Food allergy, Sensitization, Specific immunoglobulin E

Citation Information : Samajdar SS, Mukherjee S, Ghosh S, Munshi S, Tripathi SK, Moitra S, Vedanthan P. Component-resolved Diagnostics in Allergy Practice Focusing on Food Allergy: A Systematic Review. Bengal Physician Journal 2023; 10 (2):29-42.

DOI: 10.5005/jp-journals-10070-8016

License: CC BY-NC 4.0

Published Online: 07-08-2023

Copyright Statement:  Copyright © 2023; The Author(s).


In this systematic review, we have discussed the role of component-resolved diagnostics (CRD) in the diagnosis of immunoglobulin E (IgE)-mediated food allergies; IgE-mediated food allergies are adverse reactions to food caused by an immunologic mechanism involving specific IgE (sIgE) antibodies. While self-reported food adverse reactions are common, the prevalence of confirmed food allergies through oral food challenge (OFC) is estimated to be around 1%. The conventional diagnostic process for food allergies involves clinical history, in vivo and/or in vitro tests, and OFC. However, many components used in these tests are irrelevant to the diagnostic process. Component-resolved diagnostics is a diagnostic technique that uses purified allergens to detect sIgE antibody responses against individual allergenic molecules. It aims to enhance the specificity of IgE testing and differentiate between genuine sensitization and cross-reactivity-induced sensitization. Component-resolved diagnostics also helps in stratifying the clinical risk associated with sensitization patterns and predicting OFC outcomes. However, CRD cannot replace the OFC as the gold standard due to insufficient sensitivity and specificity levels. Proper interpretation is crucial to avoid unnecessary elimination diets and auto-injector prescriptions that may impact patients’ quality of life. Component-resolved diagnostics plays a significant role in the diagnostic work-up of food allergies by identifying and characterizing allergenic compounds causing allergic responses. It enables differentiation between primary and secondary sensitization, predicts disease progression and clinical risk, and aids in stratifying OFC results. However, there are gaps in research and clinical practice. Commercial diagnostic tests are only available for a limited number of allergens, CRD is costly compared to other tests, and it lacks sufficient sensitivity and specificity to replace the OFC. Further research and initiatives are necessary to address these gaps and improve the use of CRD in food allergy diagnosis.

  1. Canonica GW, Ansotegui IJ, Pawankar R, et al. WAO-ARIA-GA2LEN consensus document on molecular-based allergy diagnostics. World Allergy Organ J 2013;6(1):1–17. DOI: 10.1186/1939-4551-6-17.
  2. Matricardi PM, Kleine–Tebbe J, Hoffmann HJ, et al. EAACI molecular allergology user's guide. Pediatr Allergy Immunol 2016; 27(Suppl. 23):1–250. DOI: 10.1111/pai.12563.
  3. Borres MP, Maruyama N, Sato S, et al. Recent advances in component resolved diagnosis in food allergy. Allergol Int 2016;65:378–387. DOI: 10.1016/j.alit.2016.07.002.
  4. Treudler R, Simon JC. Overview of component resolved diagnostics. Curr Allergy Asthma Rep 2013;13:110–117. DOI: 10.1007/s11882-012-0318-8.
  5. Muraro A, Werfel T, Hoffmann–Sommergruber K, et al. EAACI food allergy and anaphylaxis guidelines: Diagnosis and management of food allergy. Allergy 2014;69(8):1008–1025. DOI: 10.1111/all.12429.
  6. Marsh DG, Goodfriend L, King TP, et al. Allergen nomenclature. Bull World Health Organ 1986;64(5):767–774. PMID: 3492310.
  7. Allergen nomenclature. Available at: Accessed on: 31 July 2019.
  8. Fiocchi A, Dahdah L, Albarini M, et al. Cow's milk allergy in children and adults. Chem Immunol Allergy 2015;101:114–123. DOI: 10.1159/000375415.
  9. Martorell–Aragonés A, Echeverría–Zudaire L, Alonso–Lebrero E, et al. Food allergy committee of SEICAP. Position document: IgE-mediated cow's milk allergy. Allergol Immunopathol 2015;43:507–526. DOI: 10.1016/j.aller.2015.01.003.
  10. Restani P, Ballabio C, Tripodi S, et al. Meat allergy. Curr Opin Allergy Clin Immunol 2009;9(3):265–269. DOI: 10.1097/ACI.0b013e32832aef3d.
  11. Ahrens B, Lopes de Oliveira LC, Grabenhenrich L, et al. Individual cow's milk allergens as prognostic markers for tolerance development? Clin Exp Allergy 2012;42(11):1630–1637. DOI: 10.1111/cea.12001.
  12. Savilahti EM, Rantanen V, Lin JS, et al. Early recovery from cow's milk allergy is associated with decreasing IgE and increasing IgG4 binding to cow's milk epitopes. J Allergy Clin Immunol 2010;125(6):1315–1321. DOI: 10.1016/j.jaci.2010.03.025.
  13. James JM, Sampson HA. Immunologic changes associated with the development of tolerance in children with cow milk allergy. J Pediatr 1992;121(3):371–377. DOI: 10.1016/S0022-3476(05)81788-3.
  14. Agyemang A, Saf S, Sifers T, et al. Utilizing boiled milk sIgE as a predictor of baked milk tolerance in cow's milk allergic children. J Allergy Clin Immunol Pract 2019;7(6):2049–2051. DOI: 10.1016/j.jaip.2019.01.034.
  15. Lorenz AR, Scheurer S, Vieths S. Food allergens: Molecular and immunological aspects, allergen databases and cross-reactivity. Chem Immunol Allergy 2015;101:18–29. DOI: 10.1159/000371647. Epub 2015 May 21. PMID: 26022861.
  16. Bloom KA, Huang FR, Bencharitiwong R, et al. Effect of heat treatment on milk and egg proteins allergenicity. Pediatr Allergy Immunol 2014;25(8):740–746. DOI: 10.1111/pai.12283.
  17. Caubet JC, Nowak–Wegrzyn A, Moshier E, et al. Utility of casein-specific IgE levels in predicting reactivity to baked milk. J Allergy Clin Immunol 2013;131(1):222–224. DOI: 10.1016/j.jaci.2012.06.049.
  18. Ford LS, Bloom KA, Nowak–Wegrzyn AH, et al. Basophil reactivity, wheal size, and immunoglobulin levels distinguish degrees of cow's milk tolerance. J Allergy Clin Immunol 2013;131(1):180–186. DOI: 10.1016/j.jaci.2012.06.003.
  19. Sampson HA, Aceves S, Bock SA, et al. Food allergy: A practice parameter update—2014. J Allergy Clin Immunol 2014;134(5): 1016–1025. DOI: 10.1016/j.jaci.2014.05.013.
  20. Lambert R, Grimshaw KEC, Ellis B, et al. Evidence that eating baked egg or milk influences egg or milk allergy resolution: A systematic review. Clin Exp Allergy 2017;47(6):829–837. DOI: 10.1111/cea.12940.
  21. Savilahti EM, Kuitunen M, Valori M, et al. Use of IgE and IgG4 epitope binding to predict the outcome of oral immunotherapy in cow's milk allergy. Pediatr Allergy Immunol 2014;25(3):227–235. DOI: 10.1111/pai.12186.
  22. Martinez–Botas J, Rodriguez–Alvarez M, Cerecedo I, et al. Identification of novel peptide biomarkers to predict safety and efficacy of cow's milk oral immunotherapy by peptide microarray. Clin Exp Allergy 2015;45(6):1071–1084. DOI: 10.1111/cea.12528.
  23. Savage J, Sicherer S, Wood R. The natural history of food allergy. J Allergy Clin Immunol Pract 2016;4(2):196–203. DOI: 10.1016/j.jaip.2015.11.024.
  24. Wood RA, Sicherer SH, Vickery BP, et al. The natural history of milk allergy in an observational cohort. J Allergy Clin Immunol 2013;131:80–812. DOI: 10.1016/j.jaci.2012.10.060.
  25. Bartuzi Z, Cocco RR, Muraro A, et al. Contribution of molecular allergen analysis in diagnosis of milk allergy. Curr Allergy Asthma Rep 2017;17(7):46. DOI: 10.1007/s11882-017-0716-z.
  26. Hasan SA, Wells RD, Davis CM. Egg hypersensitivity in review. Allergy Asthma Proc 2013;34(1):26–32. DOI: 10.2500/aap.2013.34.3621.
  27. Mine Y, Yang M. Recent advances in the understanding of egg allergens: Basic, industrial, and clinical perspectives. J Agric Food Chem 2008;56(13):4874–4900. DOI: 10.1021/jf8001153.
  28. Benhamou AH, Caubet JC, Eigenmann PA, et al. State of the art and new horizons in the diagnosis and management of egg allergy. Allergy 2010;65(3):283–289. DOI: 10.1111/j.1398-9995.2009.02251.x.
  29. Calvani M, Arasi S, Bianchi A, et al. Is it possible to make a diagnosis of raw, heated, and baked egg allergy in children using cutoffs? A systematic review. Pediatr Allergy Immunol 2015;26(6):509–521. DOI: 10.1111/pai.12432.
  30. Benhamou AH, Zamora SA, Eigenmann PA. Correlation between specific immunoglobulin E levels and the severity of reactions in egg allergic patients. Pediatr Allergy Immunol 2008;19(2):173–179. DOI: 10.1111/j.1399-3038.2007.00602.x.
  31. Ando H, Moverare R, Kondo Y, et al. Utility of ovomucoid-specific IgE concentrations in predicting symptomatic egg allergy. J Allergy Clin Immunol 2008;122(3):583–588. DOI: 10.1016/j.jaci.2008.06.016.
  32. Saifi M, Swamy N, Crain M, et al. Tolerance of a high-protein baked-egg product in egg-allergic children. Ann Allergy Asthma Immunol 2016;116(5):415–419. DOI: 10.1016/j.anai.2015.12.012.
  33. Sopo SM, Greco M, Cuomo B, et al. Matrix effect on baked egg tolerance in children with IgE-mediated hen's egg allergy. Pediatr Allergy Immunol 2016;27(5):465–470. DOI: 10.1111/pai.12570.
  34. Alessandri C, Zennaro D, Scala E, et al. Ovomucoid (Gal d 1) specific IgE detected by microarray system predict tolerability to boiled hen's egg and an increased risk to progress to multiple environmental allergen sensitisation. Clin Exp Allergy 2012;42(3):441–450. DOI: 10.1111/j.1365-2222.2011.03915.x.
  35. Bartnikas LM, Sheehan WJ, Tuttle KL, et al. Ovomucoid specific immunoglobulin E as a predictor of tolerance to cooked egg. Allergy Rhinol Provid 2015;6(3):198–204. DOI: 10.2500/ar.2015.6.0135.
  36. Senouf AHB, Borres MP, Eigenmann PA. Native and denatured egg white protein IgE tests discriminate hen's egg allergic from egg–tolerant children. Pediatr Allergy Immunol 2015;26(1):12–17. DOI: 10.1111/pai.12317.
  37. Chokshi NY, Sicherer SH. Molecular diagnosis of egg allergy: An update. Expert Rev Mol Diagn 2015;15(7):895–906. DOI: 10.1586/ 14737159.2015.1041927.
  38. Vazquez–Ortiz M, Pascal M, Jiménez–Feijoo R, et al. Ovalbumin-specific IgE/IgG4 ratio might improve the prediction of cooked and uncooked egg tolerance development in egg-allergic children. Clin Exp Allergy 2014;44(4):579–588. DOI: 10.1111/cea.12273.
  39. Upton J, Nowak–Wegrzyn A. The impact of baked egg and baked milk diets on IgE- and non-IgE-mediated allergy. Clin Rev Allergy Immunol 2018;55(2):118–138. DOI: 10.1007/s12016-018-8669-0.
  40. Leonard SA, Nowak–Węgrzyn AH. Baked milk and egg diets for milk and egg allergy management. Immunol Allergy Clin N Am 2016;36(1):147–159. DOI: 10.1016/j.iac.2015.08.013.
  41. Holzhauser T, Wackermann O, Ballmer–Weber BK, et al. Soybean (Glycine max) allergy in Europe: Gly m 5 (beta-conglycinin) and Gly m 6 (glycinin) are potential diagnostic markers for severe allergic reactions to soy. J Allergy Clin Immunol 2009;123(2):452–458. DOI: 10.1016/j.jaci.2008.09.034.
  42. Ebisawa M, Brostedt P, Sjölander S, et al. Gly m 2S albumin is a major allergen with a high diagnostic value in soybean-allergic children. J Allergy Clin Immunol 2013;132(4):976e1-5–978e1-5. DOI: 10.1016/j.jaci.2013.04.028.
  43. Kattan JD, Sampson HA. Clinical reactivity to soy is best identified by component testing to Gly m 8. J Allergy Clin Immunol Pract 2015;3(6):970–972. DOI: 10.1016/j.jaip.2015.06.002.
  44. Mittag D, Vieths S, Vogel L, et al. Soybean allergy in patients allergic to birch pollen: Clinical investigation and molecular characterization of allergens. J. Allergy Clin Immunol 2004;113(1):148–154. DOI: 10.1016/j.jaci.2003.09.030.
  45. Kosma P, Sjölander S, Landgren E, et al. Severe reactions after the intake of soy drink in birch pollen–allergic children sensitized to Gly m 4. Acta Paediatr 2011;100(2):305–306. DOI: 10.1111/j.1651-2227.2010.02049.x.
  46. Mastrorilli C, Tripodi S, Caffarelli C, et al. Endotypes of pollen–food syndrome in children with seasonal allergic rhinoconjunctivitis: A molecular classification. Allergy Eur J Allergy Clin Immunol 2016;71(8):1181–1191. DOI: 10.1111/all.12888.
  47. Stiefel G, Anagnostou K, Boyle RJ, et al. BSACI guideline for the diagnosis and management of peanut and tree nut allergy. Clin Exp Allergy 2017;47(6):719–739. DOI: 10.1111/cea.12957.
  48. Sicherer SH, Furlong TJ, Muñoz–Furlong A, et al. A voluntary registry for peanut and tree nut allergy: Characteristics of the first 5149 registrants. J Allergy Clin Immunol 2001;108(1):128–132. DOI: 10.1067/mai.2001.115755.
  49. Rona RJ, Keil T, Summers C, et al. The prevalence of food allergy: A meta-analysis. J Allergy Clin Immunol 2007;120(3):638–646. DOI: 10.1016/j.jaci.2007.05.026.
  50. Grabenhenrich LB, Dölle S, Moneret–Vautrin A, et al. Anaphylaxis in children and adolescents: The European Anaphylaxis Registry. J Allergy Clin Immunol 2016;137(4):1128–1137. DOI: 10.1016/j.jaci.2015.11.015.
  51. Turner PJ, Gowland MH, Sharma V, et al. Increase in anaphylaxis-related hospitalizations but no increase in fatalities: An analysis of United Kingdom national anaphylaxis data, 1992–2012. J Allergy Clin Immunol 2015;135(4):956.e1–963.e1. DOI: 10.1016/j.jaci.2014.10.021.
  52. González–Pérez A, Aponte Z, Vidaurre CF, et al. Anaphylaxis epidemiology in patients with and patients without asthma: A United Kingdom database review. J Allergy Clin Immunol 2010; 125(5):1098–1104. DOI: 10.1016/j.jaci.2010.02.009.
  53. Beyer K, Grabenhenrich L, Härtl M, et al. Predictive values of component-specific IgE for the outcome of peanut and hazelnut food challenges in children. Allergy Eur J Allergy Clin Immunol 2015;70(1):90–98. DOI: 10.1111/all.12530.
  54. Asarnoj A, Nilsson C, Lidholm J, et al. Peanut component Ara h 8 sensitization and tolerance to peanut. J Allergy Clin Immunol 2012;130(2):468–472. DOI: 10.1016/j.jaci.2012.05.019.
  55. Krause S, Reese G, Randow S, et al. Lipid transfer protein (Ara h 9) as a new peanut allergen relevant for a Mediterranean allergic population. J Allergy Clin Immunol 2009;124(4):771.e5–778.e5. DOI: 10.1016/j.jaci.2009.06.008.
  56. Masthoff LJN, Mattsson L, Zuidmeer–Jongejan L, et al. Sensitization to Cor a 9 and Cor a 14 is highly specific for a hazelnut allergy with objective symptoms in Dutch children and adults. J Allergy Clin Immunol 2013;132(2):393–399. DOI: 10.1016/j.jaci.2013.02.024.
  57. Masthoff LJN, Blom WM, Rubingh CM, et al. Sensitization to Cor a 9 or Cor a 14 has a strong impact on the distribution of thresholds to hazelnut. J Allergy Clin Immunol Pract 2018;6(6):2112.e1–2114.e1. DOI: 10.1016/j.jaip.2018.04.040.
  58. Beck SC, Huissoon AP, Baretto RL, et al. A critical analysis of the utility of component tests in the diagnosis of pollen-related peanut and hazelnut allergy in the context of the BSACI guideline. Clin Exp Allergy 2017;47(9):1223–1224. DOI: 10.1111/cea.12991.
  59. Hansen KS, Ballmer–Weber BK, Sastre J, et al. Component-resolved in vitro diagnosis of hazelnut allergy in Europe. J Allergy Clin Immunol 2009;123(5):1134–1141. DOI: 10.1016/j.jaci.2009.02.005.
  60. Costa J, Carrapatoso I, Oliveira MBPP, et al. Walnut allergens: Molecular characterization, detection and clinical relevance. Clin Exp Allergy 2014;44(3):319–341. DOI: 10.1111/cea.12267.
  61. van der Valk JPM, van Wijk RG, Vergouwe Y, et al. sIgE Ana o 1, 2 and 3 accurately distinguish tolerant from allergic children sensitized to cashew nuts. Clin Exp Allergy 2017;47(1):113–120. DOI: 10.1111/cea.12794.
  62. Adatia A, Clarke AE, Yanishevsky Y, et al. Sesame allergy: Current perspectives. J Asthma Allergy 2017;10:141–151. DOI: 10.2147/JAA.S113612.
  63. Maruyama N, Nakagawa T, Ito K, et al. Measurement of specific IgE antibodies to Ses i 1 improves the diagnosis of sesame allergy. Clin Exp Allergy 2016;46(1):163–171. DOI: 10.1111/cea.12626.
  64. Uotila R, Kukkonen AK, Westerhout WM, et al. Component-resolved diagnostics demonstrates that most peanut-allergic individuals could potentially introduce tree nuts to their diet. Clin Exp Allergy 2018;48(6):712–721. DOI: 10.1111/cea.13101.
  65. Kim JF, McCleary N, Nwaru BI, et al. Diagnostic accuracy, risk assessment, and cost-effectiveness of component-resolved diagnostics for food allergy: A systematic review. Allergy 2018;73(8):1609–1621. DOI: 10.1111/all.13399.
  66. Nwaru BI, Hickstein L, Panesar SS, et al. EAACI food allergy and anaphylaxis guidelines group prevalence of common food allergies in Europe: A systematic review and meta-analysis. Allergy 2014;69(8):992–1007. DOI: 10.1111/all.12423.
  67. Eigenmann PA, Lack G, Mazon A, et al. Managing nut allergy: A remaining clinical challenge. J Allergy Clin Immunol Pract 2017;5(2):296–300. DOI: 10.1016/j.jaip.2016.08.014.
  68. Eigenmann PA. Do we still need oral food challenges for the diagnosis of food allergy? Pediatr Allergy Immunol 2018;29(3):239–242. DOI: 10.1111/pai.12845.
  69. Sapone A, Bai JC, Ciacci C, et al. Spectrum of gluten-related disorders: Consensus on new nomenclature and classification. BMC Med 2012;10:13. DOI: 10.1186/1741-7015-10-13.
  70. Ostblom E, Lilja G, Ahlstedt S, et al. Patterns of quantitative food-specific IgE-antibodies and reported food hypersensitivity in 4-year-old children. Allergy 2008;63(4):418–424. DOI: 10.1111/j.1398-9995.2007.01575.x.
  71. Matricardi PM, Bockelbrink A, Beyer K, et al. Primary versus secondary immunoglobulin E sensitization to soy and wheat in the multi-centre allergy study cohort. Clin Exp Allergy 2008;38(3):493–500. DOI: 10.1111/j.1365-2222.2007.02912.x.
  72. Dondi A, Tripodi S, Panetta V, et al. Pollen-induced allergic rhinitis in 1360 Italian children: Comorbidities and determinants of severity. Pediatr Allergy Immunol 2013;24(8):742–751. DOI: 10.1111/pai.12136.
  73. Inomata N. Wheat allergy. Curr Opin Allergy Clin Immunol 2009;9(3):238–243. DOI: 10.1097/ACI.0b013e32832aa5bc.
  74. Bock SA. Prospective appraisal of complaints of adverse reactions to foods in children during the first 3 years of life. Pediatrics 1987;79(5):683–688. PMID: 3575022
  75. Bock SA, Sampson HA. Food allergy in infancy. Pediatr Clin N Am 1994;41(5):1047–1067. DOI: 10.1016/S0031-3955(16)38845-9.
  76. Jansen JJ, Kardinaal AF, Huijbers G, et al. Prevalence of food allergy and intolerance in the adult Dutch population. J Allergy Clin Immunol 1994;93(2):446–456. DOI: 10.1016/0091-6749(94)90353-0.
  77. Sampson HA. Food allergy. Part 1: Immunopathogenesis and clinical disorders. J Allergy Clin Immunol 1999;103(5 Pt 1):717–728. DOI: 10.1016/S0091-6749(99)70411-2.
  78. Baur X, Degens PO, Sander I. Baker's asthma: Still among the most frequent occupational respiratory disorders. J Allergy Clin Immunol 1998;102(6 Pt 1):984–997. DOI: 10.1016/S0091-6749(98)70337-9.
  79. Ameille J, Pauli G, Calastreng–Crinquand A, et al. Reported incidence of occupational asthma in France, 1996–1999: The ONAP programme. Observatoire National des Asthmes Professionnels. Occup Environ Med 2003;60(2):136–141. DOI: 10.1136/oem.60.2.136.
  80. Leira HL, Bratt U, Slåstad S. Notified cases of occupational asthma in Norway: Exposure and consequences for health and income. Am J Ind Med 2005;48(5):359–364. DOI: 10.1002/ajim.20213.
  81. Malo JL, Chan–Yeung M. Agents causing occupational asthma. J Allergy Clin Immunol 2009;123(3):545–550. DOI: 10.1016/j.jaci.2008.09.010.
  82. Morita E, Kunie K, Matsuo H. Food-dependent exercise-induced anaphylaxis. J Dermatol Sci 2007;47(2):109–117. DOI: 10.1016/j.jdermsci.2007.03.004.
  83. Juhász A, Belova T, Florides CG, et al. Genome mapping of seed-borne allergens and immunoresponsive proteins in wheat. Sci Adv 2018;4(8):eaar8602. DOI: 10.1126/sciadv.aar8602.
  84. Battais F, Richard C, Jacquenet S, et al. Wheat grain allergies: An update on wheat allergens. Eur Ann Allergy Clin Immunol 2008;40(3):67–76. PMID: 19334370.
  85. Palosuo K, Varjonen E, Kekki OM, et al. Wheat omega-5 gliadin is a major allergen in children with immediate allergy to ingested wheat. J Allergy Clin Immunol 2001;108(4):634–638. DOI: 10.1067/mai.2001.118602.
  86. Baar A, Pahr S, Constantin C, et al. Molecular and immunological characterization of Tri a 36, a low molecular weight glutenin, as a novel major wheat food allergen. J Immunol 2012;189(6):3018–3025. DOI: 10.4049/jimmunol.1200438.
  87. Fernandez–Rivas M. Fruit and vegetable allergy. Chem Immunol Allergy 2015;101:162–170. DOI: 10.1159/000375469.
  88. Ballmer–Weber BK, Hoffmann–Sommergruber K. Molecular diagnosis of fruit and vegetable allergy. Curr Opin Allergy Clin Immunol 2011;11(3):229–235. DOI: 10.1097/ACI.0b013e3283464c74.
  89. Price A, Ramachandran S, Smith GP, et al. Oral allergy syndrome (pollen–food allergy syndrome) Dermatitis 2015;26(2):78–88. DOI: 10.1097/DER.0000000000000087.
  90. Kohn JB. What is oral allergy syndrome? J Acad Nutr Diet 2017;117(6):988. DOI: 10.1016/j.jand.2017.03.021.
  91. Pauli G, Metz–Favre C. Cross-reactions between pollens and vegetable food allergens. Rev Mal Respir 2013;30(4):328–337. DOI: 10.1016/j.rmr.2012.10.633.
  92. Zuidmeer L, Goldhahn K, Rona RJ, et al. The prevalence of plant–food allergies: A systematic review. J Allergy Clin Immunol 2008;121(5):1210–1218. DOI: 10.1016/j.jaci.2008.02.019.
  93. Burney P, Summers C, Chinn S, et al. Prevalence and distribution of sensitization to foods in the European Community Respiratory Health Survey: A EuroPrevall analysis. Allergy 2010;65(9):1182–1188. DOI: 10.1111/j.1398-9995.2010.02346.x.
  94. Muluk NB, Cingi C. Oral allergy syndrome. Am J Rhinol Allergy 2018;32(1):27–30. DOI: 10.2500/ajra.2018.32.4489.
  95. Bassler OY, Weiss J, Wienkoop S, et al. Evidence for novel tomato seed allergens: IgE-reactive legumin and vicilin proteins identified by multidimensional protein fractionation mass spectrometry and in silico epitope modeling. J Proteome Res 2009;8(3):1111–1122. DOI: 10.1021/pr800186d.
  96. Yagami A, Ebisawa M. New findings, pathophysiology, and antigen analysis in pollen–food allergy syndrome. Curr Opin Allergy Clin Immunol 2019;19(3):218–223. DOI: 10.1097/ACI.0000000000000533.
  97. Andersen MBS, Hall S, Dragsted LO. Identification of European allergy patterns to the allergen families PR-10, LTP, and profilin from Rosaceae fruits. Clin Rev Allergy Immunol 2011;41(1):4–19. DOI: 10.1007/s12016-009-8177-3.
  98. Bublin M, Lauer I, Oberhuber C, et al. Production and characterization of an allergen panel for component-resolved diagnosis of celery allergy. Mol Nutr Food Res 2008;52(Suppl. 2):S241–S250. DOI: 10.1002/mnfr.200700270.
  99. Hoffmann–Sommergruber K. Pathogenesis-related (PR)-proteins identified as allergens. Biochem Soc Trans 2002;30(Pt 6):930–935. DOI: 10.1042/bst0300930.
  100. Van Winkle RC, Chang C. The biochemical basis and clinical evidence of food allergy due to lipid transfer proteins: A comprehensive review. Clin Rev Allergy Immunol 2014;46(3):211–224. DOI: 10.1007/s12016-012-8338-7.
  101. Egger M, Hauser M, Mari A, et al. The role of lipid transfer proteins in allergic diseases. Curr Allergy Asthma Rep 2010;10(5):326–335. DOI: 10.1007/s11882-010-0128-9.
  102. Asero R, Pravettoni V. Anaphylaxis to plant–foods and pollen allergens in patients with lipid transfer protein syndrome. Curr Opin Allergy Clin Immunol 2013;13(4):379–385. DOI: 10.1097/ACI.0b013e32835f5b07.
  103. Gadermaier G, Hauser M, Egger M, et al. Sensitization prevalence, antibody cross-reactivity and immunogenic peptide profile of Api g 2, the non-specific lipid transfer protein 1 of celery. PLoS One 2011;6(8):e24150. DOI: 10.1371/journal.pone.0024150.
  104. Vejvar E, Himly M, Briza P, et al. Allergenic relevance of nonspecific lipid transfer proteins 2: Identification and characterization of Api g 6 from celery tuber as representative of a novel IgE binding protein family. Mol Nutr Food Res 2013;57(11):2061–2070. DOI: 10.1002/mnfr.201300085.
  105. Basagaña M, Elduque C, Teniente–Serra A, et al. Clinical profile of lipid transfer protein syndrome in a Mediterranean area. J Investig Allergol Clin Immunol 2018;28(1):58–60. DOI: 10.18176/jiaci.0209.
  106. Rial MJ, Sastre JD. Food allergies caused by allergenic lipid transfer proteins: What is behind the geographic restriction? Curr Allergy Asthma Rep 2018;18(11):56. DOI: 10.1007/s11882-018-0810-x.
  107. Radauer C, Breiteneder H. Evolutionary biology of plant–food allergens. J Allergy Clin Immunol 2007;120(3):518–525. DOI: 10.1016/j.jaci.2007.07.024.
  108. Santos A, Ree VR. Profilins: Mimickers of allergy or relevant allergens? Int Arch Allergy Immunol 2011;155(3):191–204. DOI: 10.1159/000321178.
  109. Asero R, Tripodi S, Dondi A, et al. Prevalence and clinical relevance of IgE sensitization to profilin in childhood: A multicenter study. Int Arch Allergy Immunol 2015;168(1):25–31. DOI: 10.1159/000441222.
  110. de Jesus–Pires C, Ferreira–Neto JRC, Bezerra–Neto JP, et al. Plant thaumatin-like proteins: Function, evolution and biotechnological applications. Curr Protein Pept Sci 2020;21(1):36–51. DOI: 10.2174/1389203720666190318164905.
  111. Gonzalez–Mancebo E, Gonzalez-de-Olano D, Trujillo MJ, et al. Prevalence of sensitization to lipid transfer proteins and profilins in a population of 430 patients in the south of Madrid J Investig Allergol Clin Immunol 2011;21(4):278–282. PMID: 21721373.
  112. Asero R, Piantanida M, Pinter E, et al. The clinical relevance of lipid transfer protein. Clin Exp Allergy 2018;48(1):6–12. DOI: 10.1111/cea.13053.
  113. Mota I, Gaspar Â, Benito–Garcia F, et al. Anaphylaxis caused by lipid transfer proteins: An unpredictable clinical syndrome. Allergol Immunopathol (Madr) 2018;46(6):565–570. DOI: 10.1016/j.aller.2018.04.002.
  114. García–Mozo H. Poaceae pollen as the leading aeroallergen worldwide: A review. Allergy 2017;72(12):1849–1858. DOI: 10.1111/all.13210.
  115. Bublin M, Pfister M, Radauer C, et al. Component-resolved diagnosis of kiwifruit allergy with purified natural and recombinant kiwifruit allergens. J Allergy Clin Immunol 2011;125:687–694. DOI: 10.1016/j.jaci.2009.10.017.
  116. Bernardi ML, Giangrieco I, Camardella L, et al. Allergenic lipid transfer proteins from plant-derived foods do not immunologically and clinically behave homogeneously: The kiwifruit LTP as a model. PLoS One 2011;6(11):e27856. DOI: 10.1371/journal.pone.0027856.
  117. Blanco C. Latex–fruit syndrome. Curr Allergy Asthma Rep 2003;3(1):47–53. DOI: 10.1007/s11882-003-0012-y.
  118. Wagner S, Breiteneder H. The latex–fruit syndrome. Biochem Soc Trans 2002;30(Pt 6):935–940. DOI: 10.1042/bst0300935.
  119. Radauer C, Adhami F, Fürtler I, et al. Latex-allergic patients sensitized to the major allergen hevein and hevein-like domains of class I chitinases show no increased frequency of latex-associated plant–food allergy. Mol Immunol 2011;48(4):600–609. DOI: 10.1016/j.molimm.2010.10.019.
  120. Sharp MF, Lopata AL. Fish allergy: In review. Clin Rev Allergy Immunol 2014;46(3):258–271. DOI: 10.1007/s12016-013-8363-1.
  121. The National Center for Biotechnology Information. The NCBI Taxonomy Database. Available at: Accessed on: 2 April 2019.
  122. Ruethers T, Taki AC, Johnston EB, et al. Seafood allergy: A comprehensive review of fish and shellfish allergens. Mol Immunol 2018;100:28–57. DOI: 10.1016/j.molimm.2018.04.008.
  123. Tong WS, Yuen AW, Wai CY, et al. Diagnosis of fish and shellfish allergies. J Asthma Allergy 2018;11:247–260. DOI: 10.2147/JAA.S142476.
  124. Farioli L, Losappio LM, Giuffrida MG, et al. Mite-induced asthma and IgE levels to shrimp, mite, tropomyosin, arginine kinase and Der p 10 are the most relevant risk factors for challenge-proven shrimp allergy. Int Arch Allergy Immunol 2017;174(3–4):133–143. DOI: 10.1159/000481985.
  125. Van Hage M, Biederman T, Platts–Mills TAE. Allergy to Mammalian Meat. In: EAACI Molecular Allergology User's Guide. Volume B14. The European Academy of Allergy and Clinical Immunology (EAACI); Zurich, Switzerland: 2016. pp. 193–198.
  126. Wilson JM, Shuyler AJ, Workman L, et al. Investigation into the α-Gal syndrome: Characteristics of 261 children and adults reporting red meat allergy. J Allergy Clin Immunol Pract 2019;7(7):2348.e4–2358.e4. DOI: 10.1016/j.jaip.2019.03.031.
  127. Commins SP, James HR, Stevens W, et al. Delayed clinical and ex vivo response to mammalian meat in patients with IgE to galactose-alpha-1.3-galctose. J. Allergy Clin Immunol 2014;134(1):108–115. DOI: 10.1016/j.jaci.2014.01.024.
  128. Martelli A, De Chiara A, Corvo M, et al. Beef allergy in children with cow's milk allergy; cow's milk allergy in children with beef allergy. Ann Allergy Asthma Immunol 2002;89(6 Suppl. 1):38–43. DOI: 10.1016/S1081-1206(10)62121-7.
  129. Sicherer SH, Sampson HA. Food allergy: A review and uptodate on epidemiology, pathogenesis, diagnosis, prevention and management. J Allergy Clin Immunol. 2018;141(1):41–58. DOI: 10.1016/j.jaci.2017.11.003.
  130. Fiocchi A, Brazek J, Schunermann HJ, et al. World Allergy Organization (WAO) diagnosis and rational for action against Cow's milk allergy (DRACMA) guidelines. Pediatr Allergy Immunol 2010;21(Suppl. 21):1–125. DOI: 10.1111/j.1399-3038.2010.01068.x.
  131. Posthumus J, James HR, Lane CJ, et al. Initial description of pork–cat syndrome in the United States. J Allergy Clin Immunol 2013;131(30:923–925. DOI: 10.1016/j.jaci.2012.12.665.
  132. Popescu F-D. Cross-reactivity between aeroallergens and food allergens. World J Methodol 2015;5(2):31–50. DOI: 10.5662/wjm.v5.i2.31.
  133. Chung CH, Mirakhur B, Chan E, et al. Cetuximab-induced anaphylaxis and IgE specific for galactose-alpha-1,3-galactose. N Engl J Med 2008;358(11):1109–1117. DOI: 10.1056/NEJMoa074943.
  134. Steinke JW, Platts–Mills TAE, et al. The alpha gal story: Lessons learned from connecting the dots. J Allergy Clin Immunol 2015;135(3): 589–596. DOI: 10.1016/j.jaci.2014.12.1947.
  135. Commins SP, Satinover SM, Hosen J, et al. Delayed anaphylaxis, angioedema, or urticaria after consumption of red meat in patients with IgE antibodies specific for galactose-alpha-1,3-galactose. J Allergy Clin Immunol 2009;123(2):426–433. DOI: 10.1016/j.jaci.2008.10.052.
  136. Stewart PH, McMullan KL, LeBlanc SB. Delayed red meat allergy: Clinical ramifications of galactose-alpha-1,3-galactose sensitization. Ann Allergy Asthma Immunol 2015;115(4):260–264. DOI: 10.1016/j.anai.2015.08.003.
  137. Stone CA, Commins SP, Choudhary S, et al. Anaphylaxis after vaccination in a pediatric patient: Further implicating alpha-gal allergy. J Allergy Clin Immunol Pract 2019;7(1):322.e2–324.e2. DOI: 10.1016/j.jaip.2018.06.005.
  138. Brestoff JR, Tesfazghi MT, Zaydman MA, et al. The B antigen protects vagainst the development of red meat allergy. J Allergy Clin Immunol Pract 2018;6(5):1790.e3–1791.e3. DOI: 10.1016/j.jaip.2018.02.010.
  139. Commins SP, Jerath MR, Cox K, et al. Delayed anaphylaxis to alpha gal an oligosaccharide in mammalian meat. Allergol Int 2016;65(1):16–20. DOI: 10.1016/j.alit.2015.10.001.
  140. Hamsten C, Starkhammar M, Tran TAT, et al. Identification of galactose-a-1,3-galactose in the gastrointestinal tract of the tick Ixodes ricinus; possible relationship with red meat allergy. Allergy 2013;68(4):549–552. DOI: 10.1111/all.12128.
  141. Quan P, Sabaté–Brescó M, D'Amelio C, et al. Validation of a commercial allergen microarray platform for specific immunoglobulin E detection of respiratory and plant–food allergens. Ann Allergy, Asthma Immunol 2022;128(3):283.e4–290.e4. DOI: 10.1016/j.anai.2021.11.019.
  142. Aberer W, Holzweber F, Hemmer W, et al. Inhibition of cross-reactive carbohydrate determinants (CCDs) enhances the selectivity of in vitro allergy diagnosis. Allergol Select 2017;1(2):141–149. DOI: 10.5414/ALX01638E.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.